organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Kazuyuki Hino, Kazuyuki Sato, Hiroo Takahashi, Shigeru Suzuki and Jin Mizuguchi*

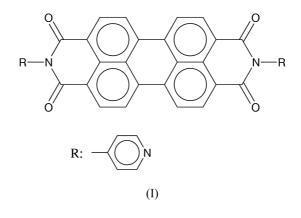
Department of Applied Physics, Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, 240-8501 Yokohama, Japan

Correspondence e-mail: mizu-j@ynu.ac.jp

Key indicators

Single-crystal X-ray study T = 93 K Mean σ (C–C) = 0.007 Å R factor = 0.074 wR factor = 0.147 Data-to-parameter ratio = 10.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.


N,N'-Di-4-pyridylperylene-3,4:9,10-bis-(dicarboximide)

The title compound, $C_{34}H_{16}N_4O_4$, is a perylene–imide pigment utilized for H_2 gas sensors. The molecule has C_i symmetry. The angle between each of the pyridyl rings and the perylene-imide skeleton is 74.5 (2)°. The molecules are stacked along the *c* axis with a tilt angle of about 31.5° between adjacent molecules.

Received 14 January 2005 Accepted 19 January 2005 Online 29 January 2005

Comment

Perylene compounds are industrially important pigments, covering a variety of shades from red *via* maroon to black (Herbst & Hunger, 1993). The title compound, (I), is a *para*-pyridyl derivative, abbreviated to PPP.

We have carried out a series of investigations on H₂ gas sensors utilizing a high proton affinity of organic pigments that have pyridyl rings connected directly to the choromophore (Takahashi & Mizuguchi, 2005). The N atom of the pyridyl ring works as a strong proton acceptor and plays a decisive role for signal detection. PPP exhibits a resistivity change of about three orders of magnitude even for 0.05% H₂. Other than the present *para* derivative, there are also *ortho* and *meta*-derivatives and their sensitivity is slightly different, depending the site of the N atom. In this connection, structure analyses of these derivatives have been carried out. The structures of the *ortho* and *meta* derivatives are reported in the preceding two papers (Mizuguchi *et al.*, 2005*a*,*b*). This paper reports the structure of the *para* derivative.

The molecule of PPP (Fig. 1) is characterized by C_i symmetry. The angle between each of the pyridyl rings and the perylene-imide skeleton is 74.5 (2)°. The perylene-imide skeleton is planar (r.m.s. deviation = 0.032 Å). The molecules are stacked along the *c* axis with a tilt angle of 31.5° between adjacent molecules, as shown in Fig. 2.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Experimental

PPP was synthesized by reaction of perylenetetracarboxylic dianhydride with 1,2-di-4-pyridyldiamine in dimethylnaphthalene at 490 K for 3 h according to the method of Herbst & Hunger (1993). The product was then purified three times by sublimation at 760 K, using a two-zone furnace (Mizuguchi, 1981). Single crystals of PPP were grown from a solution in 1-chloronaphthalene After 72 h, a number of single crystals were obtained in the form of needles.

> Cu K α radiation Cell parameters from 8331

reflections $\theta = 3.5-68.2^{\circ}$ $\mu = 0.85 \text{ mm}$ T = 93.2 KNeedle, red

 $R_{\rm int}=0.077$

 $\theta_{\rm max} = 68.2$

 $h = -24 \rightarrow 23$

 $k = -18 \rightarrow 18$ $l = -7 \rightarrow 6$

 $w = 1/[\sigma^2(F_o^2)]$

 $(\Delta/\sigma)_{\text{max}} = 0.001$ $\Delta \rho_{\text{max}} = 0.36 \text{ e Å}$

 $\Delta \rho_{\rm min} = -0.33 \ {\rm e} \ {\rm \AA}^{-3}$

 $0.25\,\times\,0.05\,\times\,0.05$ mm

1965 independent reflections 839 reflections with $F^2 > 2\sigma(F^2)$

H-atom parameters constrained

Crystal data

$C_{34}H_{16}N_4O_4$
$M_r = 544.51$
Orthorhombic, Pccn
a = 21.232 (2) Å
b = 15.890(2) Å
c = 6.9311 (8) Å
$V = 2338.4 (5) \text{ Å}^3$
Z = 4
$D_{\rm r} = 1.547 {\rm Mg} {\rm m}^{-3}$

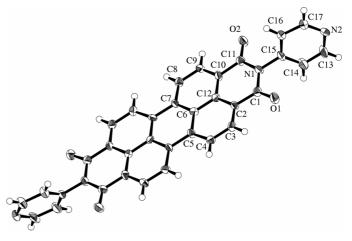
Data collection

Rigaku R-AXIS RAPID Imaging Plate diffractometer ω scans Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{min} = 0.554, T_{max} = 0.958$

18572 measured reflections

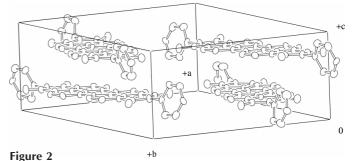
Refinement

Refinement on F^2 $R[F^2>2\sigma(F^2)] = 0.074$ $wR(F^2) = 0.148$ S = 1.091965 reflections 190 parameters


Table 1

Selected geometric parameters (Å, °).

O1-C1	1.211 (5)	C5-C6	1.429 (6)
O2-C11	1.231 (5)	C5-C7 ⁱ	1.466 (6)
N1-C1	1.415 (6)	C6-C7	1.424 (5)
N1-C11	1.402 (5)	C6-C12	1.426 (6)
C1-C2	1.459 (6)	C7-C8	1.401 (6)
C2-C3	1.386 (6)	C8-C9	1.397 (6)
C2-C12	1.415 (6)	C9-C10	1.373 (6)
C3-C4	1.380 (6)	C10-C11	1.476 (6)
C4-C5	1.399 (6)	C10-C12	1.408 (6)
	. ,		
C1-N1-C11	124.4 (4)	C5 ⁱ -C7-C6	119.8 (4)
O1-C1-N1	119.4 (4)	$C5^{i} - C7 - C8$	121.9 (4)
O1-C1-C2	123.5 (5)	C6-C7-C8	118.3 (4)
N1-C1-C2	117.1 (4)	C7-C8-C9	121.9 (4)
C1-C2-C3	119.0 (4)	C8-C9-C10	120.5 (4)
C1-C2-C12	120.8 (4)	C9-C10-C11	119.3 (4)
C3-C2-C12	120.2 (4)	C9-C10-C12	119.7 (4)
C2-C3-C4	120.1 (4)	C11-C10-C12	121.0 (4)
C3-C4-C5	122.7 (4)	O2-C11-N1	120.2 (4)
C4-C5-C6	117.7 (4)	O2-C11-C10	123.2 (4)
C4-C5-C7 ⁱ	123.2 (4)	N1-C11-C10	116.6 (4)
$C6 - C5 - C7^{i}$	119.0 (4)	C2-C12-C6	119.4 (4)
C5-C6-C7	121.2 (4)	C2-C12-C10	120.0 (4)
C5-C6-C12	119.8 (4)	C6-C12-C10	120.6 (4)
C7-C6-C12	119.0 (4)		


Symmetry code: (i) $\frac{3}{2} - x, \frac{3}{2} - y, z$.

All H atoms were positioned geometrically $[C-H = 0.95 \text{ Å} \text{ and } U_{iso} = 1.2U_{eq}(C)]$ and refined using a riding model.

Figure 1

A view of the molecular conformation of (I), showing 50% displacement ellipsoids for the non-H atoms. Unlabelled atoms are related to labelled atoms by $\frac{3}{2} - x$, $\frac{3}{2} - y$, z.

The packing arrangement of PPP.

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *TEXSAN* (Molecular Structure Corporation, 2001); program(s) used to solve structure: *SHELXS86* (Sheldrick, 1985); program(s) used to refine structure: *TEXSAN*; molecular graphics: *ORTEPIII* (Burnett & Johnson, 1996); software used to prepare material for publication: *TEXSAN*.

The authors are indebted to Mr I. Suzuki for experimental assistance.

References

- Burnett, M. N. & Johnson, C. K.(1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.
- Herbst, W. & Hunger, K. (1993). Industrial Organic Pigments, pp. 467–475. Weinheim: VCH.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Mizuguchi, J. (1981). Cryst. Res. Technol. 16, 695-700.
- Mizuguchi, J., Hino, K., Sato, K., Takahashi, H. & Suzuki, S. (2005a). Acta Cryst. E61, 0434–0436.
- Mizuguchi, J., Hino, K., Sato, K., Takahashi, H. & Suzuki, S. (2005b). Acta Cryst. E61, 0437-0439.
- Molecular Structure Corporation (2001). *TEXSAN*. Version 1.11. MSC, 9009 New Trails Drive, The Woodlands, TX 77381–5209, USA.
- Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (1985). SHELXS86. Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger and R. Goddard, pp. 175–189. Oxford University Press.
- Takahashi, H. & Mizuguchi, J. (2005). J. Electrochem. Soc. In the press.